IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-15-9003-0_4.html
   My bibliography  Save this book chapter

CAN Estimators in Exponential and Cramér Families

In: Asymptotic Statistical Inference

Author

Listed:
  • Shailaja Deshmukh

    (Savitribai Phule Pune University, Department of Statistics)

  • Madhuri Kulkarni

    (Savitribai Phule Pune University, Department of Statistics)

Abstract

Chapters 2 and 3 present the theory related to consistent and CAN estimators. Chapter 4 is concerned with the study of a CAN estimator of a parameter, when a probability distribution of X belongs to a specific family of distributions such as an exponential family or a Cramér family. An exponential family is a subclass of a Cramér family. In Sect. 4.2, we prove that in a one-parameter exponential family and in a multiparameter exponential family, the maximum likelihood estimator and the moment estimator based on a sufficient statistic are the same and these are CAN estimators. Section 4.3 presents the Cramér-Huzurbazar theory for the distributions belonging to a Cramér family. Cramér-Huzurbazar theory, which is usually referred to as standard large sample theory of maximum likelihood estimation, asserts that for large sample size, with high probability, the maximum likelihood estimator of a parameter is a CAN estimator. These results are heavily used in Chaps. 5 and 6 to find the asymptotic null distribution of the likelihood ratio test statistic, Wald’s test statistic and the score test statistic. In many models, the system of likelihood equations cannot be solved explicitly and we need some numerical procedures. In Sect. 4.4, we discuss frequently used numerical procedures to solve the system of likelihood equations, such as Newton-Raphson procedure and method of scoring. The last section illustrates the results established in Sects. 4.2 to 4.4 using $$\texttt {R}$$ R software.

Suggested Citation

  • Shailaja Deshmukh & Madhuri Kulkarni, 2021. "CAN Estimators in Exponential and Cramér Families," Springer Books, in: Asymptotic Statistical Inference, chapter 0, pages 167-266, Springer.
  • Handle: RePEc:spr:sprchp:978-981-15-9003-0_4
    DOI: 10.1007/978-981-15-9003-0_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-15-9003-0_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.