Author
Listed:
- Shailaja Deshmukh
(Savitribai Phule Pune University, Department of Statistics)
- Madhuri Kulkarni
(Savitribai Phule Pune University, Department of Statistics)
Abstract
As discussed in Chap. 1 , in asymptotic inference theory, we study the limiting behavior of a sequence $$\{T_n, n \ge 1\}$$ { T n , n ≥ 1 } of estimators of $$\theta $$ θ and examine how close it is to $$\theta $$ θ using various modes of convergence. The most frequently investigated large sample property of an estimator is weak consistency. Weak consistency of an estimator is defined in terms of convergence in probability. We examine how close the estimator is to the true parameter value in terms of probability of proximity. Weak consistency is always referred to as consistency in literature. In Sect. 2.1, we define it for a real parameter and illustrate by a variety of examples. We study some properties of consistent estimators, the most important being the invariance of consistency under continuous transformation. Strong consistency and uniform consistency of an estimator are discussed briefly in Sects. 2.3 and 2.4. In Sect. 2.5, we define consistency when the distribution of a random variable or a random vector is indexed by a vector parameter. It is defined in two ways as marginal consistency and joint consistency, the two approaches are shown to be equivalent. This result is heavily used in applications. Thus, to obtain a consistent estimator for a vector parameter, one can proceed marginally and use all the tools discussed in Sect. 2.2. From examples in Sects. 2.2 and 2.5, we note that, for a given parameter, one can have an uncountable family of consistent estimators and hence one has to deal with the problem of selecting the best from the family. It is discussed in Sect. 2.6. Within a family of consistent estimators of $$\theta $$ θ , the performance of a consistent estimator is judged by the rate of convergence of a true coverage probability to 1 and of MSE to 0 for a consistent estimator whose MSE exists, faster the rate better is the estimator. Section 2.7 is devoted to the verification of the consistency of an estimator by simulation. It is illustrated through some examples and $$\texttt {R}$$ R software.
Suggested Citation
Shailaja Deshmukh & Madhuri Kulkarni, 2021.
"Consistency of an Estimator,"
Springer Books, in: Asymptotic Statistical Inference, chapter 0, pages 29-93,
Springer.
Handle:
RePEc:spr:sprchp:978-981-15-9003-0_2
DOI: 10.1007/978-981-15-9003-0_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-15-9003-0_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.