IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-15-2537-7_7.html
   My bibliography  Save this book chapter

Inferential Statistics for Hypothesis Testing

In: Illustrating Statistical Procedures: Finding Meaning in Quantitative Data

Author

Listed:
  • Ray W. Cooksey

    (University of New England, UNE Business School)

Abstract

This chapter discusses and illustrates inferential statistics for hypothesis testing. The procedures and fundamental concepts reviewed in this chapter can help to accomplish the following goals: (1) evaluate the statistical and practical significance of the difference between a specific statistic (e.g. a proportion, a mean, a regression weight, or a correlation coefficient) and its hypothesised value in the population; and/or (2) evaluate the statistical and practical significance of the difference between some combination of statistics (e.g. group means) and some combination of their corresponding population parameters. Such comparisons/tests may be relatively simple or multivariate in nature. In this chapter, you will explore various procedures (e.g. t-tests, analysis of variance, multiple regression, multivariate analysis of variance and covariance, discriminant analysis, logistic regression) that can be employed in different hypothesis testing situations and research designs to inform the judgments of significance. You will also learn that statistical significance is not the only way to address hypotheses—practical significance (e.g., effect size) is almost always relevant as well; in some cases, even more relevant. Finally, you will explore several fundamental concepts dealing with the logic of statistical inference, the general linear model, research design, sampling and, for complex designs, the concept of interaction.

Suggested Citation

  • Ray W. Cooksey, 2020. "Inferential Statistics for Hypothesis Testing," Springer Books, in: Illustrating Statistical Procedures: Finding Meaning in Quantitative Data, edition 3, chapter 0, pages 241-451, Springer.
  • Handle: RePEc:spr:sprchp:978-981-15-2537-7_7
    DOI: 10.1007/978-981-15-2537-7_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-15-2537-7_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.