IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-15-1735-8_12.html
   My bibliography  Save this book chapter

Can Data Fusion Increase the Performance of Action Detection in the Dark?

In: Statistics for Data Science and Policy Analysis

Author

Listed:
  • Anwaar Ulhaq

    (Charles Sturt University, School of Computing and Mathematics
    Victoria University, Centre of Applied Informatics)

Abstract

Automated human action detection and recognition is a challenging research problem due to the complexity of its data. Contextual data provides additional cues about the actions like if we know car and man, we can short-list actions involving car and man, i.e., driving, opening the car door etc. Therefore, such data can play a pivotal role in modelling and recognizing human actions. However, the visual context during night is often badly disrupted due to clutter and adverse lighting conditions especially in outdoor environments. This situation requires the visual contextual data fusion of captured video sequences. In this paper, we have explored the significance of contextual data fusion for automated human action recognition in video sequences captured at night-time. For this purpose, we have proposed an action recognition framework based on contextual data fusion, spatio-temporal feature fusion and correlation filtering. We have performed experimentation on multi-sensor night vision video streams from infra-red (IR) and visible (VIS) sensors. Experimental results show that contextual data fusion based on the fused contextual information and its colourization significantly enhances the performance of automated action recognition.

Suggested Citation

  • Anwaar Ulhaq, 2020. "Can Data Fusion Increase the Performance of Action Detection in the Dark?," Springer Books, in: Azizur Rahman (ed.), Statistics for Data Science and Policy Analysis, chapter 0, pages 159-171, Springer.
  • Handle: RePEc:spr:sprchp:978-981-15-1735-8_12
    DOI: 10.1007/978-981-15-1735-8_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-15-1735-8_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.