Author
Listed:
- M. Ataharul Islam
(University of Dhaka, Institute of Statistical Research and Training (ISRT))
- Rafiqul I. Chowdhury
(University of Dhaka, Institute of Statistical Research and Training (ISRT))
Abstract
The Bernoulli distribution is a very important discrete distribution with extensive applications to real-life problems. This distribution can be linked with univariate distributions such as binomial, geometric, negative binomial, Poisson, gamma, hypergeometric, exponential, normal, etc., either as a limit or as a sum or other functions. On the other hand, some distributions can be shown to arise from bivariate Bernoulli distribution as well. Since the introduction of the generalized linear model and generalized estimating equations, we observed a very rapid increase in the use of linear models based on binary outcome data. However, as the generalized linear models are proposed only for univariate outcome data and GEE is based on the marginal model, the utility of bivariate relationship cannot be explored adequately. It may be noted here that repeated measures data comprise of two types of associations: (i) association between outcome variables, and (ii) association between explanatory variables and outcome variables. Hence, correlated outcomes pose difficulty in estimating parameters of models for outcome and explanatory variables. In this chapter, regression models for correlated binary outcomes are introduced. A joint model for bivariate Bernoulli is obtained by using marginal and conditional probabilities using two approaches. In the first approach, estimates are obtained using the traditional likelihood method and the second approach provides a generalized bivariate binary model by extending the univariate generalized linear model for bivariate data. Tests for independence and goodness of fit of the model are shown. Section 6.2 reviews the bivariate Bernoulli distribution and defines the joint mass function in terms of conditional and marginal probabilities. Section 6.3 introduces the covariate dependence and shows the logit functions for both conditional and marginal probabilities. The likelihood function and estimating equations are shown. Some measures of dependence in outcomes as well as tests for model, parameters, and dependence are presented in Sect. 6.4. A recently introduced generalized bivariate Bernoulli model is discussed in Sect. 6.5. In this section, the bivariate Bernoulli mass function is expressed in an exponential family of distributions and link functions are obtained for correlated outcome variables as well as for association between two outcomes. Estimating equations are shown using a bivariate generalization of GLM and test for dependence is discussed. Section 6.6 summarizes some alternative procedures for binary repeated measures data. Examples are displayed in Sect. 6.7.
Suggested Citation
M. Ataharul Islam & Rafiqul I. Chowdhury, 2017.
"Modeling Bivariate Binary Data,"
Springer Books, in: Analysis of Repeated Measures Data, chapter 0, pages 67-85,
Springer.
Handle:
RePEc:spr:sprchp:978-981-10-3794-8_6
DOI: 10.1007/978-981-10-3794-8_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-10-3794-8_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.