IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-10-0871-9_2.html
   My bibliography  Save this book chapter

The Design Effects and Misspecification Effects

In: Complex Surveys

Author

Listed:
  • Parimal Mukhopadhyay

    (Indian Statistical Institute)

Abstract

It is known that the classical statistical models are based on the assumptions that the observations are obtained from samples drawn by simple random sampling with replacement (srswr) or equivalently the observations are independently and identically distributed (IID). As such the conventional formulae for standard statistical packages which implement these procedures are also based on IID assumptions. In practice, in large-scale surveys samples are generally selected using a complex sampling design, such as a stratified multistage sampling design and this implies a situation different from an IID setup. Again, in large-scale sample surveys the finite population is often considered as a sample from a superpopulation. Survey data are commonly used for analytic inference about model parameters such as mean, regression coefficients, cell probabilities, etc. The sampling design may entail the situation that the sample observations are no longer subject to the same superpopulation model as the complete finite population. Thus, even if the IID assumption may hold for the complete population, the same generally breaks down for sample observations. The inadequacy of IID assumption is well known in the sample survey literature. It has been known for a long time, for example, that the homogeneity which the population clusters generally exhibit tend to increase the variance of the sample estimator over that of the estimator under srswr assumption, and further estimates of this variance wrongly based on IID assumptions are generally biased downwards. In view of all these observations it is required to examine the effects of a true complex design on the variance of an estimator with reference to a srswr design or an IID model setup. Section 2.2 examines these effects, design effect, and misspecification effect of a complex design for estimation of a single parameter $$\theta $$ θ . The effect of a complex design on the confidence interval of $$\theta $$ θ is considered in the next section. Section 2.4 extends the concepts in Sect. 2.2 to multiparameter case and thus defines multivariate design effect. Since estimation of variance of estimator of $$\theta , \hat{\theta }$$ θ , θ ^ (covariance matrix when $$\theta $$ θ is a vector of parameters) is of major interest in this chapter we consider different methods of estimation of variance of estimators, particularly nonlinear estimators in the subsequent section. The estimation procedures are very general; they do not depend on any distributional assumption and are therefore nonparametric in nature. Section 2.5.1 considers in detail a simple method of estimation of variance of a linear statistic. In Sects. 2.5.2–2.5.7 we consider Taylor series linearization procedure, random group (RG) method, balanced repeated replication (BRR), jackknife (JK) procedure, JK repeated replication, and bootstrap (BS) techniques of variance estimation. Lastly, we consider the effect of a complex survey design on a classical test statistic for testing a hypothesis regarding a covariance matrix.

Suggested Citation

  • Parimal Mukhopadhyay, 2016. "The Design Effects and Misspecification Effects," Springer Books, in: Complex Surveys, chapter 0, pages 27-66, Springer.
  • Handle: RePEc:spr:sprchp:978-981-10-0871-9_2
    DOI: 10.1007/978-981-10-0871-9_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-10-0871-9_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.