IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-981-10-0126-0_8.html
   My bibliography  Save this book chapter

Bayesian, Utility-Based, Adaptive Enrichment Designs with Frequentist Error Control

In: Frontiers of Biostatistical Methods and Applications in Clinical Oncology

Author

Listed:
  • Noah Simon

    (University of Washington, Department of Biostatistics)

Abstract

Our improving understanding of the biology underlying various diseases has reinforced the idea that many diseases previously considered homogeneous are in fact heterogeneous collections with different prognoses, pathologies, and causal mechanisms. To this end, the biomedical field has begun to focus on developing targeted therapies: therapies aimed at treating only a subset of the population with a given disease (often derived by the molecular pathology of the disease). However, characterizing these subsets has been a challenge: Hundreds of patients may be required to effectively characterize these subsets. Often information on this many patients is not available until well into large-scale trials. In this chapter we discuss adaptive enrichmentAdaptive enrichment designs: clinical trial designs that allow the simultaneous construction and use of biomarkers, during an ongoing trial. We first detail common scenarios where adaptive enrichment designs could be fruitfully applied to gain efficiency over classical designs. We then discuss two classes of adaptive enrichment strategies: AdaptationAdaptation based on prespecified covariate-based stratificationStratification , and adaptation based on modeling response as a potentially more complex function of covariates. We will contrast these strategies with more classical non-enriched biomarker strategies (based on post hoc modeling/testing). Finally, we will discuss and address a number of potential issues and concerns with adaptive enrichment designs.

Suggested Citation

  • Noah Simon, 2017. "Bayesian, Utility-Based, Adaptive Enrichment Designs with Frequentist Error Control," Springer Books, in: Shigeyuki Matsui & John Crowley (ed.), Frontiers of Biostatistical Methods and Applications in Clinical Oncology, pages 105-123, Springer.
  • Handle: RePEc:spr:sprchp:978-981-10-0126-0_8
    DOI: 10.1007/978-981-10-0126-0_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-981-10-0126-0_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.