Author
Abstract
Recall that the general problem of linear programming can be formulated as follows: (2.1.1) % MathType!Translator!2!1!LaTeX.tdl!TeX -- LaTeX 2.09 and later! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGceaqabeaacaWGMb % GaaiikaiaadIhacaGGPaGaeyypa0ZaaaWaaeaacaWGJbGaaiilaiaa % dIhaaiaawMYicaGLQmcacqGH9aqpdaaadaqaaiaadogadaWgaaWcba % GaaGymaaqabaGccaGGSaGaamiEamaaBaaaleaacaaIXaaabeaaaOGa % ayzkJiaawQYiaiabgUcaRmaaamaabaGaam4yamaaBaaaleaacaaIYa % aabeaakiaacYcacaWG4bWaaSbaaSqaaiaaikdaaeqaaaGccaGLPmIa % ayPkJaGaeyOKH4QaciyAaiaac6gacaGGMbGaaiilaiaadIhacqGH9a % qpdaqadaqaaiaadIhadaWgaaWcbaGaaGymaaqabaGccaGGSaGaamiE % amaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaiabgIGiolaadI % facaGGSaaabaGaamiwaiabg2da9maaceaabaGaamiEaiabg2da9maa % bmaabaGaamiEamaaBaaaleaacaaIXaaabeaakiaacYcacaWG4bWaaS % baaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaGaaiOoaiaadIhaaiaa % wUhaamaaBaaaleaacaaIXaaabeaakiabgIGiolaadweadaahaaWcbe % qaaiaad6gacaaIXaaaaOGaaiilaiaadIhadaWgaaWcbaGaaGOmaaqa % baGccqGHiiIZcaWGfbWaaWbaaSqabeaacaWGUbGaaGOmaaaakiaacY % cacaWG4bWaaSbaaSqaaiaaigdaaeqaaOGaeyyzImRaaGimaiaacYca % aeaacaWGbbWaaSbaaSqaaiaaigdacaaIXaaabeaakiaadIhadaWgaa % WcbaGaaGymaaqabaGccqGHRaWkcaWGbbWaaSbaaSqaaiaaigdacaaI % YaaabeaakiaadIhadaWgaaWcbaGaaGOmaaqabaGccqGHKjYOcaWGIb % GaaiilaiaadgeadaWgaaWcbaGaaGOmaiaaigdaaeqaaOGaamiEamaa % BaaaleaacaaIXaaabeaakiabgUcaRiaadgeadaWgaaWcbaGaaGOmai % aaikdaaeqaaOGaamiEamaaBaaaleaacaaIYaaabeaakiabg2da9maa % ciaabaGaamOyamaaBaaaleaacaaIYaaabeaaaOGaayzFaaaaaaa!96D8! $$ \begin{array}{l}f(x) = \left\langle {c,x} \right\rangle = \left\langle {{c_1},{x_1}} \right\rangle + \left\langle {{c_2},{x_2}} \right\rangle \to \inf ,x = \left( {{x_1},{x_2}} \right) \in X, \\X = {\left\{ {x = \left( {{x_1},{x_2}} \right):x} \right._1} \in {E^{n1}},{x_2} \in {E^{n2}},{x_1} \ge 0, \\{A_{11}}{x_1} + {A_{12}}{x_2} \le b,{A_{21}}{x_1} + {A_{22}}{x_2} = \left. {{b_2}} \right\} \\\end{array} $$ where A ij are m i × n j matrices, c j ∈ Enj, bi ∈E mi , i,j = 1,2. As before, we denote f * = inf x∈X f(x) assuming that X ∈ Ø. For the case where f * > -∞ we introduce a set % MathType!Translator!2!1!LaTeX.tdl!TeX -- LaTeX 2.09 and later! % MathType!MTEF!2!1!+- % feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamiwamaaBa % aaleaacaGGQaaabeaakiabg2da9maacmaabaGaamiEaiabgIGiolaa % dIfacaGG6aGaamOzaiaacIcacaWG4bGaaiykaiabg2da9iaadAeada % WgaaWcbaGaaiOkaaqabaaakiaawUhacaGL9baaaaa!44FC! $$ {X_*} = \left\{ {x \in X:f(x) = {F_*}} \right\} $$ . Recall that problem (2.1.1) is solvable if X* ≠ Ø; every point x* ∈ X* is a solution of this problem.
Suggested Citation
F. P. Vasilyev & A. Yu. Ivanitskiy, 2001.
"The Main Theorems of Linear Programming,"
Springer Books, in: In-Depth Analysis of Linear Programming, chapter 0, pages 79-118,
Springer.
Handle:
RePEc:spr:sprchp:978-94-015-9759-3_2
DOI: 10.1007/978-94-015-9759-3_2
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-015-9759-3_2. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.