IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-015-9632-9_6.html
   My bibliography  Save this book chapter

Dynamical approach to starlike and spirallike functions

In: Semigroups in Geometrical Function Theory

Author

Listed:
  • David Shoikhet

    (Technion-Israel Institute of Technology, Department of Mathematics)

Abstract

This chapter is devoted to showing some relationships between semigroups and the geometry of domains in the complex plane. Mostly we will study those univalent (one-to-one correspondence) functions on the unit disk whose images are starshaped or spiralshaped domains. Several important aspects, however, had to be omitted, e.g. convex and close-to-convex functions (see, for example, [57, 55]), and other different classes of univalent functions. We have selected the forthcoming material according to the guiding principle that the demonstrated methods may be generalized to higher dimensions. For example, the celebrated Koebe One Quarter Theorem states that the image of a univalent function h on ∆ normalized by the condition h(0) = 0 and h’(0) = 1 contains a disk of radius 1/4. This theorem is no longer true at higher dimensions. Nevertheless, the dynamical approach analogues of the Koebe theorem have been recently established and used for subclasses of starlike (or spirallike) functions (see, for example [141, 109, 26, 56, 14]).

Suggested Citation

  • David Shoikhet, 2001. "Dynamical approach to starlike and spirallike functions," Springer Books, in: Semigroups in Geometrical Function Theory, chapter 0, pages 153-204, Springer.
  • Handle: RePEc:spr:sprchp:978-94-015-9632-9_6
    DOI: 10.1007/978-94-015-9632-9_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-015-9632-9_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.