IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-011-5532-8_17.html
   My bibliography  Save this book chapter

Continuous Scaling on a Bivariate Copula

In: Distributions with given Marginals and Moment Problems

Author

Listed:
  • C. M. Cuadras

    (Universitat de Barcelona, Departament d’Estadística)

  • J. Fortiana

    (Universitat de Barcelona, Departament d’Estadística)

Abstract

Cuadras and Fortiana (1993, 1995, 1996b) introduced continuous scaling, an extension of classic metric scaling which gives a decomposition of the variability of a random variable in a countable set of principal axes. (1996a) introduced related metric scaling, a technique to construct a joint distance on a finite set from two marginal distances, with applications to representing categorical data. In this contribution related metric scaling is extended to a bivariate distribution, by introducing dependence between the principal axes obtained from the marginal distances. The formal analogy with the Fréchet class of distributions is explored, and in particular the relations with the product, the lower and the upper bound copulas.

Suggested Citation

  • C. M. Cuadras & J. Fortiana, 1997. "Continuous Scaling on a Bivariate Copula," Springer Books, in: Viktor Beneš & Josef Štěpán (ed.), Distributions with given Marginals and Moment Problems, pages 137-142, Springer.
  • Handle: RePEc:spr:sprchp:978-94-011-5532-8_17
    DOI: 10.1007/978-94-011-5532-8_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-011-5532-8_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.