IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-010-1745-9_2.html
   My bibliography  Save this book chapter

The Hopf-Cole Solution of the Nonlinear Diffusion Equation and Its Geometrical Interpretation for the Case of Small Diffusivity

In: The Nonlinear Diffusion Equation

Author

Listed:
  • J. M. Burgers

    (University of Maryland, Institute for Fluid Dynamics and Applied Mathematics)

Abstract

We consider the nonlinear diffusion equation* (1.1) {u_t} + u{u_x} = v{u_{xx}}, $${u_t} + u{u_x} = v{u_{xx}},$$ where v is a positive constant. This equation has been chosen as a simplified form of the Navier—Stokes equations, and we may consider u as a quantity of the nature of a velocity, having the dimensions LT −1 with reference to the scales of length and time; while v plays the part of a diffusivity or kinematic viscosity, with dimensions L 2 T −1. Half the square of u can be considered as a ‘kinetic energy’ per unit length of the x-scale, with dimensions L 2 T −2; and v(u x )2 will be a ‘dissipation of energy’ per unit length and in unit time, with dimensions L 2 T −3. These dimensional considerations are not of primary importance, but they will turn up from time to time. ‘Mass’ or ‘density’ does not occur.

Suggested Citation

  • J. M. Burgers, 1974. "The Hopf-Cole Solution of the Nonlinear Diffusion Equation and Its Geometrical Interpretation for the Case of Small Diffusivity," Springer Books, in: The Nonlinear Diffusion Equation, chapter 0, pages 9-20, Springer.
  • Handle: RePEc:spr:sprchp:978-94-010-1745-9_2
    DOI: 10.1007/978-94-010-1745-9_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-010-1745-9_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.