IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-010-0698-9_7.html

Asymptotic analysis of the steady-state and time-dependent Berman problem

In: Practical Asymptotics

Author

Listed:
  • J. R. King

    (University of Nottingham, School of Mathematical Sciences)

  • S. M. Cox

    (University of Nottingham, School of Mathematical Sciences)

Abstract

The Berman problem for two-dimensional flow of a viscous fluid through an infinite channel is studied. Fluid motion is driven by uniform suction (or injection) of fluid through the upper channel wall, and is characterised by a Reynolds number R; the lower wall is impermeable. A similarity solution in which the streamfunction takes the form ψ = −xF(y, t) is examined, where x and y are coordinates parallel to and normal to the channel walls, respectively. The function F satisfies the Riabouchinsky-Proudman-Johnson equation, a partial differential equation in y and t; steady flows satisfy an ordinary differential equation in y. The steady states are computed numerically and the asymptotics of these solutions described in the limits of small wall suction or injection, large wall injection and large wall suction, the last of these being given more concisely and more accurately than in previous treatments. In the time-dependent problem, the solution appears to be attracted to a limit cycle when R ≫ 1 (large wall suction). This solution has been computed numerically for ε = 1/R down to 0·011, but the structure of the solution makes further numerical progress currently infeasible. The limit cycle consists of several phases, some with slow and others with very rapid evolution. During one of the rapid phases, the solution achieves a large amplitude, and this feature of the solution lies behind the practical difficulties encountered in numerical simulations. The profile of the solution is plotted during the various phases and corresponding asymptotic descriptions are given. An exact solution to the Riabouchinsky-Proudman-Johnson equation covers most of the phases, although separate discussion is required of the boundary layers near the two walls and an interior layer near a zero of F. Particular consideration is required when this zero approaches the upper channel wall.

Suggested Citation

  • J. R. King & S. M. Cox, 2001. "Asymptotic analysis of the steady-state and time-dependent Berman problem," Springer Books, in: H. K. Kuiken (ed.), Practical Asymptotics, pages 87-130, Springer.
  • Handle: RePEc:spr:sprchp:978-94-010-0698-9_7
    DOI: 10.1007/978-94-010-0698-9_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-010-0698-9_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.