IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-009-3129-9_4.html
   My bibliography  Save this book chapter

Initial-value problems: multi-step methods

In: Numerical Solution of Ordinary Differential Equations

Author

Listed:
  • L. Fox

    (Oxford University)

  • D. F. Mayers

    (Oxford University)

Abstract

The one-step finite-difference methods of the previous chapter, with the possible exception of the trapezoidal rule method, are basically rather too uneconomic for general use. Their local truncation error is of rather low order, with the result that to achieve good accuracy we need to use either: (a) a rather small step-by-step interval, involving many steps to cover a specified range; or (b) one of our correcting devices which involve some additional computation and more computer programming. The special one-step methods of the previous chapter, the Taylor series method and the explicit Runge-Kutta methods, do not share these disadvantages, but they involve extra computer storage, the Taylor series method involves a possibly large amount of non-automatic differentiation, and with the Runge—Kutta methods we have to compute possibly rather complicated expressions several times in each step. Moreover, both these methods have rather poor partial stability properties.

Suggested Citation

  • L. Fox & D. F. Mayers, 1987. "Initial-value problems: multi-step methods," Springer Books, in: Numerical Solution of Ordinary Differential Equations, chapter 4, pages 78-97, Springer.
  • Handle: RePEc:spr:sprchp:978-94-009-3129-9_4
    DOI: 10.1007/978-94-009-3129-9_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-009-3129-9_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.