IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-009-1948-8_14.html
   My bibliography  Save this book chapter

Reducing Systems of Linear Differential Equations to a Passive Form

In: Symmetries of Partial Differential Equations

Author

Listed:
  • V. L. Topunov

    (V. I. Lenin Moscow State Pedagogical Institute, Department of Mathematics)

Abstract

In this paper, an application of the Riquer-Thomas-Janet theory is described for the problem of transforming a system of partial differential equations into a passive form, i.e., to a special form which contains explicitly both the equations of the initial system and all their nontrivial differential consequences. This special representation of a system markedly facilitates the subsequent integration of the corresponding differential equations. In this paper, the modern approach to the indicated problem is presented. This is the approach adopted in the Knuth-Bendix procedure [13] for critical-pair/completion and then Buchberger’s algorithm for completion of polynomial ideal bases [13] (or, alternatively, for the construction of Groebner bases for ideals in a differential operator ring [14]). The algorithm of reduction to the passive form for linear system of partial differential equations and its implementation in the algorithmic language REFAL, as well as the capabilities of the corresponding program, are outlined. Examples illustrating the power and efficiency of the system are presented.

Suggested Citation

  • V. L. Topunov, 1989. "Reducing Systems of Linear Differential Equations to a Passive Form," Springer Books, in: A. M. Vinogradov (ed.), Symmetries of Partial Differential Equations, pages 405-420, Springer.
  • Handle: RePEc:spr:sprchp:978-94-009-1948-8_14
    DOI: 10.1007/978-94-009-1948-8_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-009-1948-8_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.