IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-94-009-0263-3_2.html
   My bibliography  Save this book chapter

On Categorical Notions of Compact Objects

In: Categorical Topology

Author

Listed:
  • Maria Manuel Clementino

    (Universidade de Coimbra, Departamento de Matemática)

Abstract

Due to the nature of compactness, there are several interesting ways of defining compact objects in a category. In this paper we introduce and study an internal notion of compact objects relative to a closure operator (following the Borel-Lebesgue definition of compact spaces) and a notion of compact objects with respect to a class of morphisms (following Áhn and Wiegandt [2]). Although these concepts seem very different in essence, we show that, in convenient settings, compactness with respect to a class of morphisms can be viewed as Borel-Lebesgue compactness for a suitable closure operator. Finally, we use the results obtained to study compact objects relative to a class of morphisms in some special settings.

Suggested Citation

  • Maria Manuel Clementino, 1996. "On Categorical Notions of Compact Objects," Springer Books, in: Eraldo Giuli (ed.), Categorical Topology, pages 15-29, Springer.
  • Handle: RePEc:spr:sprchp:978-94-009-0263-3_2
    DOI: 10.1007/978-94-009-0263-3_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-94-009-0263-3_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.