IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-88-470-1836-5_5.html
   My bibliography  Save this book chapter

Geometric Calculus and Geometry Foundations in Peano

In: Giuseppe Peano between Mathematics and Logic

Author

Listed:
  • Paolo Freguglia

    (University of L’ Aquila, Department of Pure and Applied Mathematics)

Abstract

First, Peano’s geometrical calculus theory is a general theory which is of intrinsic mathematical interest and which is also applied to mechanics and to physics. Peano’s contributions, which come from an elaboration of Grassmann’s ideas, consist in an Euclidean interpretation of relative concepts. Moreover, in this context, Peano proves important fundamental theorems of projective geometry. For this reason, Peano’s geometrical calculus has an implicit foundational interest. In our opinion, the protophysical role of Euclidean geometry in Peano’s works is essential and decisive. He distinguishes position geometry from Euclidean geometry, and from a theoretical point of view, it is appropriate. In his ‘Sui fondamenti della geometria’ the congruence theory is well determined and regulated. Classical geometry constitutes the crucial model for the study of the foundations of geometry. Even Hilbert, deep down, takes Euclid into account20. During this period, we have many proposals of systems with different essential or primitive notions and axioms. Hence, we can observe “equivalent theories” for the foundation of elementary geometry, and in this way we have a “theoretical relativism” regarding the choice of primitive elements and fundamental axioms. This is epistemologically and historiographically21 very important22.

Suggested Citation

  • Paolo Freguglia, 2011. "Geometric Calculus and Geometry Foundations in Peano," Springer Books, in: Fulvia Skof (ed.), Giuseppe Peano between Mathematics and Logic, chapter 5, pages 69-82, Springer.
  • Handle: RePEc:spr:sprchp:978-88-470-1836-5_5
    DOI: 10.1007/978-88-470-1836-5_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-88-470-1836-5_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.