IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-81-322-3628-3_5.html
   My bibliography  Save this book chapter

An Efficient Partition-Repetition Approach in Clustering of Big Data

In: Big Data Analytics

Author

Listed:
  • Bikram Karmakar

    (University of Pennsylvania, Department of Statistics, The Wharton School)

  • Indranil Mukhopadhayay

    (Indian Statistical Institute, Human Genetics Unit)

Abstract

Addressing the problem of clustering, i.e. splitting the data into homogeneous groups in an unsupervised way, is one of the major challenges in big data analytics. Volume, variety and velocity associated with such big data make this problem even more complex. Standard clustering techniques might fail due to this inherent complexity of the data cloud. Some adaptations are required or demand for novel methods are to be fulfilled towards achieving a reasonable solution to this problem without compromising the performance, at least beyond a certain limit. In this article we discuss the salient features, major challenges and prospective solution paths to this problem of clustering big data. Discussion on current state of the art reveals the existing problems and some solutions to this issue. The current paradigm and research work specific to the complexities in this area is outlined with special emphasis on the characteristic of big data in this context. We develop an adaptation of a standard method that is more suitable to big data clustering when the data cloud is relatively regular with respect to inherent features. We also discuss a novel method for some special types of data where it is a more plausible and realistic phenomenon to leave some data points as noise or scattered in the domain of whole data cloud while a major portion form different clusters. Our demonstration through simulations reveals the strength and feasibility of applying the proposed algorithm for practical purpose with a very low computation time.

Suggested Citation

  • Bikram Karmakar & Indranil Mukhopadhayay, 2016. "An Efficient Partition-Repetition Approach in Clustering of Big Data," Springer Books, in: Saumyadipta Pyne & B.L.S. Prakasa Rao & S.B. Rao (ed.), Big Data Analytics, pages 75-93, Springer.
  • Handle: RePEc:spr:sprchp:978-81-322-3628-3_5
    DOI: 10.1007/978-81-322-3628-3_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-81-322-3628-3_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.