IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-81-322-3628-3_13.html
   My bibliography  Save this book chapter

A Nonlinear Technique for Analysis of Big Data in Neuroscience

In: Big Data Analytics

Author

Listed:
  • Koel Das

    (IISER Kolkata, Department of Mathematics and Statistics)

  • Zoran Nenadic

    (University of California, Department of Biomedical Engineering)

Abstract

Recent technological advances have paved the way for big data analysis in the field of neuroscience. Machine learning techniques can be used effectively to explore the relationship between large-scale neural and behavorial data. In this chapter, we present a computationally efficient nonlinear technique which can be used for big data analysis. We demonstrate the efficacy of our method in the context of brain computer interface. Our technique is piecewise linear and computationally inexpensive and can be used as an analysis tool to explore any generic big data.

Suggested Citation

  • Koel Das & Zoran Nenadic, 2016. "A Nonlinear Technique for Analysis of Big Data in Neuroscience," Springer Books, in: Saumyadipta Pyne & B.L.S. Prakasa Rao & S.B. Rao (ed.), Big Data Analytics, pages 237-257, Springer.
  • Handle: RePEc:spr:sprchp:978-81-322-3628-3_13
    DOI: 10.1007/978-81-322-3628-3_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-81-322-3628-3_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.