IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-4-431-65958-7_27.html
   My bibliography  Save this book chapter

The Effects of Cell Adhesion on Solid Tumour Geometry

In: Morphogenesis and Pattern Formation in Biological Systems

Author

Listed:
  • Alexander R. A. Anderson

    (University of Dundee, Department of Mathematics)

Abstract

The development of a primary solid tumour (e.g. a carcinoma) begins with a single normal cell becoming transformed as a result of mutations in certain key genes. This transformed cell differs from a normal one in several ways, one of the most notable being its escape from the body’s homeostatic mechanisms, leading to inappropriate, proliferation. An individual tumour cell has the potential, over successive divisions, to develop into a cluster (or nodule) of tumour cells. Further growth and proliferation leads to the development of an avascular tumour consisting of approximately 106 cells. This cannot grow any further, owing to its dependence on diffusion as the only means of receiving nutrients and removing waste products. For any further development to occur the tumour must initiate angiogenesis — the recruitment of blood vessels. Once angiogenesis is complete, the blood network can supply the tumour with the nutrients it needs to grow further. There is now also the possibility of tumour cells finding their way into the circulation and being deposited at distant sites in the body, resulting in metastases (secondary tumours).

Suggested Citation

  • Alexander R. A. Anderson, 2003. "The Effects of Cell Adhesion on Solid Tumour Geometry," Springer Books, in: Toshio Sekimura & Sumihare Noji & Naoto Ueno & Philip K. Maini (ed.), Morphogenesis and Pattern Formation in Biological Systems, chapter 27, pages 315-325, Springer.
  • Handle: RePEc:spr:sprchp:978-4-431-65958-7_27
    DOI: 10.1007/978-4-431-65958-7_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-4-431-65958-7_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.