IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-4-431-54574-3_1.html
   My bibliography  Save this book chapter

A Quick Introduction to Gröbner Bases

In: Gröbner Bases

Author

Listed:
  • Takayuki Hibi

    (Osaka University, Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology)

Abstract

Neither specialist knowledge nor extensive investment of time is required in order for a nonspecialist to learn fundamentals on Gröbner bases. The purpose of this chapter is to provide the reader with sufficient understanding of the theory of Gröbner bases as quickly as possible with the assumption of only a minimum of background knowledge. In Sect. 1.1, the story starts with Dickson’s Lemma, which is a classical result in combinatorics. The Gröbner basis is then introduced and Hilbert Basis Theorem follows. With considering the reader who is unfamiliar with the polynomial ring, an elementary theory of ideals of the polynomial ring is also reviewed. In Sect. 1.2, the division algorithm, which is the framework of Gröbner bases, is discussed with a focus on the importance of the remainder when performing division. The highlights of the fundamental theory of Gröbner bases are, without doubt, Buchberger criterion and Buchberger algorithm. In Sect. 1.3 the groundwork of these two items are studied. Now, to read Sects. 1.1–1.3 is indispensable for being a user of Gröbner bases. Furthermore, in Sect. 1.4, the elimination theory, which is effective technique for solving simultaneous equations, is discussed. The toric ideal introduced in Sect. 1.5 is a powerful weapon for the application of Gröbner bases to combinatorics on convex polytopes. Clearly, without toric ideals, the results of Chaps. 4 and 4 could not exist. The Hilbert function studied in Sect. 1.6 is the most fundamental tool for developing computational commutative algebra and computational algebraic geometry. Section 1.6 supplies the reader with sufficient preliminary knowledge to read Chaps. 5 and 6. However, since the basic knowledge of linear algebra is required for reading Sect. 1.6, the reader who is unfamiliar with linear algebra may wish to skip Sect. 1.6 in his/her first reading. Finally, in Sect. 1.7, the historical background of Gröbner bases is surveyed with providing references for further study.

Suggested Citation

  • Takayuki Hibi, 2013. "A Quick Introduction to Gröbner Bases," Springer Books, in: Takayuki Hibi (ed.), Gröbner Bases, edition 127, chapter 0, pages 1-54, Springer.
  • Handle: RePEc:spr:sprchp:978-4-431-54574-3_1
    DOI: 10.1007/978-4-431-54574-3_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-4-431-54574-3_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.