IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2604-3_7.html
   My bibliography  Save this book chapter

Robust Methods for Compositional Data

In: Proceedings of COMPSTAT'2010

Author

Listed:
  • Peter Filzmoser

    (Vienna University of Technology)

  • Karel Hron

    (Palacký University, Faculty of Science)

Abstract

Many practical data sets in environmental sciences, official statistics and various other disciplines are in fact compositional data because only the ratios between the variables are informative. Compositional data are represented in the Aitchison geometry on the simplex, and for applying statistical methods designed for the Euclidean geometry they need to be transformed first. The isometric logratio (ilr) transformation has the best geometrical properties, and it avoids the singularity problem introduced by the centered logratio (clr) transformation. Robust multivariate methods which are based on a robust covariance estimation can thus only be used with ilr transformed data. However, usually the results are difficult to interpret because the ilr coordinates are formed by non-linear combinations of the original variables. We show for different multivariate methods how robustness can be managed for compositional data, and provide algorithms for the computation.

Suggested Citation

  • Peter Filzmoser & Karel Hron, 2010. "Robust Methods for Compositional Data," Springer Books, in: Yves Lechevallier & Gilbert Saporta (ed.), Proceedings of COMPSTAT'2010, pages 79-88, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2604-3_7
    DOI: 10.1007/978-3-7908-2604-3_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2604-3_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.