IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2604-3_19.html
   My bibliography  Save this book chapter

Empirical Dynamics and Functional Data Analysis

In: Proceedings of COMPSTAT'2010

Author

Listed:
  • Hans-Georg Müller

    (University of California, Department of Statistics)

Abstract

We review some recent developments on modeling and estimation of dynamic phenomena within the framework of Functional Data Analysis (FDA). The focus is on longitudinal data which correspond to sparsely and irregularly sampled repeated measurements that are contaminated with noise and are available for a sample of subjects. A main modeling assumption is that the data are generated by underlying but unobservable smooth trajectories that are realizations of a Gaussian process. In this setting, with only a few measurements available per subject, classical methods of Functional Data Analysis that are based on presmoothing individual trajectories will not work. We review the estimation of derivatives for sparse data, the PACE package to implement these procedures, and an empirically derived stochastic differential equation that the processes satisfy and that consists of a linear deterministic component and a drift process.

Suggested Citation

  • Hans-Georg Müller, 2010. "Empirical Dynamics and Functional Data Analysis," Springer Books, in: Yves Lechevallier & Gilbert Saporta (ed.), Proceedings of COMPSTAT'2010, pages 209-218, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2604-3_19
    DOI: 10.1007/978-3-7908-2604-3_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2604-3_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.