IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2413-1_23.html
   My bibliography  Save this book chapter

On the self-regularization property of the EM algorithm for Poisson inverse problems

In: Statistical Modelling and Regression Structures

Author

Listed:
  • Axel Munk

    (Institut für Mathematische Stochastik, Georg August Universität Göttingen)

  • Mihaela Pricop

    (Institut für Mathematische Stochastik, Georg August Universität Göttingen)

Abstract

One of the most interesting properties of the EM algorithm for image reconstruction from Poisson data is that, if initialized with a uniform image, the first iterations improve the quality of the reconstruction up to a point and it deteriorates later dramatically. This ’self- regularization’ behavior is explained in this article for a very simple noise model.We further study the influence of the scaling of the kernel of the operator involved on the total error of the EM algorithm. This is done in a semi- continuous setting and we compute lower bounds for the L1 risk. Numerical simulations and an example from fluorescence microscopy illustrate these results.

Suggested Citation

  • Axel Munk & Mihaela Pricop, 2010. "On the self-regularization property of the EM algorithm for Poisson inverse problems," Springer Books, in: Thomas Kneib & Gerhard Tutz (ed.), Statistical Modelling and Regression Structures, pages 431-448, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2413-1_23
    DOI: 10.1007/978-3-7908-2413-1_23
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2413-1_23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.