IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2413-1_2.html
   My bibliography  Save this book chapter

P-spline Varying Coefficient Models for Complex Data

In: Statistical Modelling and Regression Structures

Author

Listed:
  • Brian D. Marx

    (Louisiana State University, Department of Experimental Statistics)

Abstract

Although the literature on varying coefficient models (VCMs) is vast, we believe that there remains room to make these models more widely accessible and provide a unified and practical implementation for a variety of complex data settings. The adaptive nature and strength of P-spline VCMs allow a full range of models: from simple to additive structures, from standard to generalized linear models, from one-dimensional coefficient curves to two-dimensional (or higher) coefficient surfaces, among others, including bilinear models and signal regression. As P-spline VCMs are grounded in classical or generalized (penalized) regression, fitting is swift and desirable diagnostics are available. We will see that in higher dimensions, tractability is only ensured if efficient array regression approaches are implemented. We also motivate our approaches through several examples, most notably the German deep drill data, to highlight the breadth and utility of our approach.

Suggested Citation

  • Brian D. Marx, 2010. "P-spline Varying Coefficient Models for Complex Data," Springer Books, in: Thomas Kneib & Gerhard Tutz (ed.), Statistical Modelling and Regression Structures, pages 19-43, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2413-1_2
    DOI: 10.1007/978-3-7908-2413-1_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2413-1_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.