IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2413-1_15.html
   My bibliography  Save this book chapter

Modelling, Estimation and Visualization of Multivariate Dependence for High-frequency Data

In: Statistical Modelling and Regression Structures

Author

Listed:
  • Erik Brodin

    (Chalmers University of Technology, Department of Mathematical Sciences)

  • Claudia Klüppelberg

    (Technische Universitöat München, Center for Mathematical Sciences)

Abstract

Dependence modelling and estimation is a key issue in the assessment of financial risk. It is common knowledge meanwhile that the multivariate normal model with linear correlation as its natural dependence measure is by no means an ideal model. We suggest a large class of models and a dependence function, which allows us to capture the complete extreme dependence structure of a portfolio. We also present a simple nonparametric estimation procedure of this function. To show our new method at work we apply it to a financial data set of high-frequency stock data and estimate the extreme dependence in the data. Among the results in the investigation we show that the extreme dependence is the same for different time scales. This is consistent with the result on high-frequency FX data reported in Hauksson et al. (2001). Hence, the different asset classes seem to share the same time scaling for extreme dependence. This time scaling property of high-frequency data is also explained from a theoretical point of view.

Suggested Citation

  • Erik Brodin & Claudia Klüppelberg, 2010. "Modelling, Estimation and Visualization of Multivariate Dependence for High-frequency Data," Springer Books, in: Thomas Kneib & Gerhard Tutz (ed.), Statistical Modelling and Regression Structures, pages 267-300, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2413-1_15
    DOI: 10.1007/978-3-7908-2413-1_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2413-1_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.