IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2121-5_7.html
   My bibliography  Save this book chapter

Locally Optimal Tests of Independence for Archimedean Copula Families

In: Statistical Inference, Econometric Analysis and Matrix Algebra

Author

Listed:
  • Jörg Rahnenführer

    (Technische Universität Dortmund, Fakultät Statistik)

Abstract

A multivariate distribution can be decoupled into its marginal distributions and a copula function, a distribution function with uniform marginals. Copulas are well suited for modelling the dependence between multivariate random variables independent of their marginal distributions. Applications range from survival analysis over extreme value theory to econometrics. In recent years, copulas have attracted increased attention in financial statistics, in particular regarding modelling issues for high-dimensional problems like value-at-risk or portfolio credit risk. The well studied subclass of Archimedean copulas can be expressed as a function of a one-dimensional generating function ϕ. This class has become popular due to its richness in various distributional attributes providing flexibility in modelling. Here, we present locally optimal tests of independence for Archimedean copula families that are parameterized by a dependence parameter ϑ, where ϑ = 0 denotes independence of the marginal distributions. Under the general assumption of L 2 -differentiability at ϑ = 0 we calculate tangents of the underlying parametric families. For selected examples the optimal tests are calculated and connections to well-known correlation functionals are presented.

Suggested Citation

  • Jörg Rahnenführer, 2009. "Locally Optimal Tests of Independence for Archimedean Copula Families," Springer Books, in: Bernhard Schipp & Walter Kräer (ed.), Statistical Inference, Econometric Analysis and Matrix Algebra, pages 103-112, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2121-5_7
    DOI: 10.1007/978-3-7908-2121-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2121-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.