IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2084-3_27.html
   My bibliography  Save this book chapter

Posterior Prediction Modelling of Optimal Trees

In: Compstat 2008

Author

Listed:
  • Roberta Siciliano

    (University of Naples Federico II Monte Sant’Angelo, Department of Mathematics and Statistics)

  • Massimo Aria

    (University of Naples Federico II Monte Sant’Angelo, Department of Mathematics and Statistics)

  • Antonio D’Ambrosio

    (University of Naples Federico II Monte Sant’Angelo, Department of Mathematics and Statistics)

Abstract

The framework of this paper is classification and regression trees, also known as tree-based methods, binary segmentation, tree partitioning, decision trees. Trees can be fruitfully used either to explore and understand the dependence relationship between the response variable and a set of predictors or to assign the response class or value for new objects on which only the measurements of predictors are known. Since the introduction of two-stage splitting procedure in 1992, the research unit in Naples has been introducing several contributions in this field, one of the main issues is combining tree partitioning with statistical models. This paper will provide a new idea of knowledge extraction using trees and models. It will deal with the trade off between the interpretability of the tree structure (i.e., exploratory trees) and the accuracy of the decision tree model (i.e., decision tree-based rules). Prospective and retrospective view of using models and trees will be discussed. In particular, we will introduce a tree-based methodology that grows an optimal tree structure with the posterior prediction modelling to be used as decision rule for new objects. The general methodology will be presented and a special case will be described in details. An application on a real world data set will be finally shown.

Suggested Citation

  • Roberta Siciliano & Massimo Aria & Antonio D’Ambrosio, 2008. "Posterior Prediction Modelling of Optimal Trees," Springer Books, in: Paula Brito (ed.), Compstat 2008, pages 323-334, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2084-3_27
    DOI: 10.1007/978-3-7908-2084-3_27
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2084-3_27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.