IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2084-3_26.html
   My bibliography  Save this book chapter

Models for Understanding Versus Models for Prediction

In: Compstat 2008

Author

Listed:
  • Gilbert Saporta

    (Chaire de statistique appliquée & CEDRIC, CNAM)

Abstract

According to a standard point of view, statistical modelling consists in establishing a parsimonious representation of a random phenomenon, generally based upon the knowledge of an expert of the application field: the aim of a model is to provide a better understanding of data and of the underlying mechanism which have produced it. On the other hand, Data Mining and KDD deal with predictive modelling: models are merely algorithms and the quality of a model is assessed by its performance for predicting new observations. In this communication, we develop some general considerations about both aspects of modelling.

Suggested Citation

  • Gilbert Saporta, 2008. "Models for Understanding Versus Models for Prediction," Springer Books, in: Paula Brito (ed.), Compstat 2008, pages 315-322, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2084-3_26
    DOI: 10.1007/978-3-7908-2084-3_26
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2084-3_26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.