IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2084-3_13.html
   My bibliography  Save this book chapter

New Developments in Latent Variable Models: Non-linear and Dynamic Models

In: Compstat 2008

Author

Listed:
  • Irini Moustaki

    (London School of Economics and Political Science Department of Statistics
    Athens University of Economics and Business Department of Statistics)

Abstract

The paper reviews recent work on latent variable models for ordinal longitudinal variables and factor models with non-linear terms. The model for longitudinal data has been recently proposed by Cagnone, Moustaki and Vasdekis (2008). The model allows for time-dependent latent variables to explain the associations among ordinal variables within time where the associations among the same items across time are modelled with item-specific random effects. Rizopoulos and Moustaki (2007) extended the generalized latent variable model framework to allow for non-linear terms (interactions and higher order terms). Both models are estimated with full information maximum likelihood. Computational aspects, goodness-of-fit statistics and an application are presented.

Suggested Citation

  • Irini Moustaki, 2008. "New Developments in Latent Variable Models: Non-linear and Dynamic Models," Springer Books, in: Paula Brito (ed.), Compstat 2008, pages 155-164, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2084-3_13
    DOI: 10.1007/978-3-7908-2084-3_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2084-3_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.