IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2064-5_7.html
   My bibliography  Save this book chapter

Simultaneous Prediction of Actual and Average Values of Response Variable in Replicated Measurement Error Models

In: Recent Advances in Linear Models and Related Areas

Author

Listed:
  • Shalabh

    (Indian Institute of Technology, Department of Mathematics and Statistics)

  • Chandra Mani Paudel

    (Tribhuvan University, Department of Statistics)

  • Narinder Kumar

    (Panjab University, Department of Statistics)

Abstract

Prediction is an important aspect of decision-making process through statistical methodology. Linear regression modeling plays an important role in the prediction of an unknown value of study variable corresponding to a known value of explanatory variable. Usually, when the least square estimators are used to construct the predictors, they yield the best linear unbiased predictors provided the data recorded on variables is measured without any error. In practice, many applications fail to meet the assumption of error free observations due to various reasons. for example, due to indirect measurements, practical difficulties, qualitative variables and proxy measurements etc., the measurement error is induced in the data. The usual statistical tools in the context of linear regression analysis like ordinary least squares method then yields biased and inconsistent estimators, see Cheng and Van Ness (1999), Fuller (1987) for more details. Consequently, the predictors obtained through these estimators also then become invalid. Construction of good predictors for measurement error-ridden data and study of their performance properties under measurement error models is attempted in this article. The organization of this article is as follows. In next Section 2, we discuss the model and the target function of prediction. The predictors are constructed and discussed in Section 3. In Section 4, we derive and analyze the large sample asymptotic performance properties of the predictors in within and outside sample prediction cases. A Monte- Carlo simulation experiment is conducted to study the performance properties of the predictors in finite sample and its findings are reported in Section 5. Some concluding remarks are given in Section 6. The derivations of the results are given in Section 7.

Suggested Citation

  • Shalabh & Chandra Mani Paudel & Narinder Kumar, 2008. "Simultaneous Prediction of Actual and Average Values of Response Variable in Replicated Measurement Error Models," Springer Books, in: Recent Advances in Linear Models and Related Areas, pages 105-133, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2064-5_7
    DOI: 10.1007/978-3-7908-2064-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2064-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.