Author
Listed:
- Christian Heumann
(University of Munich, Department of Statistics)
- Shalabh
(Indian Institute of Technology, Department of Mathematics and Statistics)
Abstract
The use of prior information in linear regression analysis is well known to provide more efficient estimators of regression coefficients. Such prior information can be available in different forms from various sources like as past experience of the experimenter, similar kind of experiments conducted in the past, etc. The available prior information sometimes can be expressed in the form of exact, stochastic or inequality restrictions. The methods of restricted regression estimation, mixed estimation (Theil and Goldberger (1961)) and minimax estimation are preferred when prior information is available in the form of exact, stochastic and inequality restrictions, respectively. More details about these estimation procedures can be found in Rao, Toutenburg, Shalabh and Heumann (2008). When the prior information is available in the form of stochastic restrictions, then in many applications a systematic bias is also present. Such systematic bias can arise from different sources and due to various reasons like personal judgements of the persons involved in the experiment, in testing of general linear hypothesis in linear models when null hypothesis is rejected, in imputation of missing values through regression approach etc. Teräsvirta (1980) and Hill and Ziemer (1983) have given some interesting examples for this type of information. How to incorporate such systematic bias in the estimation procedure is an issue which is addressed in this article. The method of weighted mixed regression estimation is utilized for the purpose. How to choose the weights in this estimation procedure so as to have gain in efficiency under the criterion of mean dispersion error matrix is also addressed. The plan of the paper is as follows. The model description and the estimation of parameters are discussed in Section 2. The properties of the estimators are derived and analyzed in Section 3. Some conclusions are placed in Section 4.
Suggested Citation
Christian Heumann & Shalabh, 2008.
"Weighted Mixed Regression Estimation Under Biased Stochastic Restrictions,"
Springer Books, in: Recent Advances in Linear Models and Related Areas, pages 401-416,
Springer.
Handle:
RePEc:spr:sprchp:978-3-7908-2064-5_22
DOI: 10.1007/978-3-7908-2064-5_22
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2064-5_22. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.