IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-2064-5_12.html
   My bibliography  Save this book chapter

Higher-order Dependence in the General Power ARCH Process and the Role of Power Parameter

In: Recent Advances in Linear Models and Related Areas

Author

Listed:
  • Changli He

    (Dalarna University
    Tianjin University of Finance and Economics)

  • Hans Malmsten

    (Länsförsäkringar)

  • Timo Teräsvirta

    (University of Aarhus, CREATES, School of Economics and Management
    Stockholm School of Economics)

Abstract

In a recent paper, Ding, Granger and Engle (1993) introduced a class of autoregressive conditional heteroskedastic models called Asymmetric Power Autoregressive Conditional Heteroskedastic (A-PARCH) models. The authors showed that this class contains as special cases a large number of well-known ARCH and GARCH models. The A-PARCH model contains a particular power parameter that makes the conditional variance equation nonlinear in parameters. Among other things, Ding, Granger and Engle showed that by letting the power parameter approach zero, the A-PARCH family of models also includes the log-arithmic GARCH model as a special case. Hentschel (1995) defined a slightly extended A-PARCH model and showed that after this extension, the A-PARCH model also contains the exponential GARCH (EGARCH) model of Nelson (1991) as a special case as the power parameter approaches zero. Allowing this to happen in a general A-PARCH model forms a starting-point for our investigation. Applications of the A-PARCH model to return series of stocks and exchange rates have revealed some regularities in the estimated values of the power parameter; see Ding, Granger and Engle (1993), Brooks, Faff, McKenzie and Mitchell (2000) and McKenzie and Mitchell (2002).We add to these results by fitting symmetric first-order PARCH models to return series of 30 most actively traded stocks of the Stockholm Stock Index. Our results agree with the previous ones and suggest that the power parameter lowers the autocorrelations of squared observations compared to the corresponding autocorrelations implied, other things equal, by the standard first-order GARCH model. In the present situation this means estimating the autocorrelation function of the squared observations from the data and comparing that with the corresponding values obtained by plugging the parameter estimates into the theoretical expressions of the autocorrelations. Another example can be found in He and Teräsvirta (1999d). The plan of the paper is as follows. Section 2 defines the class of models of interest and introduces notation. The main theoretical results appear in Section 3. Section 4 contains a comparison of autocorrelation functions of squared observations for different models and Section 5 a discussion of empirical examples. Finally, conclusions appear in Section 6. All proofs can be found in Appendix.

Suggested Citation

  • Changli He & Hans Malmsten & Timo Teräsvirta, 2008. "Higher-order Dependence in the General Power ARCH Process and the Role of Power Parameter," Springer Books, in: Recent Advances in Linear Models and Related Areas, pages 231-251, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-2064-5_12
    DOI: 10.1007/978-3-7908-2064-5_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-2064-5_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.