IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7908-1709-6_10.html
   My bibliography  Save this book chapter

Robust correspondence recognition for computer vision

In: Compstat 2006 - Proceedings in Computational Statistics

Author

Listed:
  • Radim Šára

    (Czech Technical University, Center for Machine Perception, Department of Cybernetics)

Abstract

In this paper we introduce constraint satisfaction framework suitable for the task of finding correspondences in computer vision. This task lies in the heart of many problems like stereovision, 3D model reconstruction, image stitching, camera autocalibration, recognition and image retrieval and a host of others. If the problem domain is general enough, the correspondence problem can seldom employ any well-structured prior knowledge. This leads to tasks that have to find maximum cardinality solutions satisfying some weak optimality condition and a set of constraints. To avoid artifacts, robustness is required to cope with decision under occlusion, uncertainty or insufficiency of data and local violations of prior model. The proposed framework is based on a robust modification of graph-theoretic notion known as digraph kernel.

Suggested Citation

  • Radim Šára, 2006. "Robust correspondence recognition for computer vision," Springer Books, in: Alfredo Rizzi & Maurizio Vichi (ed.), Compstat 2006 - Proceedings in Computational Statistics, pages 119-131, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7908-1709-6_10
    DOI: 10.1007/978-3-7908-1709-6_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7908-1709-6_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.