IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7643-7359-7_1.html
   My bibliography  Save this book chapter

Sturm’s 1836 Oscillation Results Evolution of the Theory

In: Sturm-Liouville Theory

Author

Listed:
  • Don Hinton

    (University of Tennessee, Mathematics Department)

Abstract

We examine how Sturm’s oscillation theorems on comparison, separation, and indexing the number of zeros of eigenfunctions have evolved. It was Bôcher who first put the proofs on a rigorous basis, and major tools of analysis where introduced by Picone, Prüfer, Morse, Reid, and others. Some basic oscillation and disconjugacy results are given for the second-order case. We show how the definitions of oscillation and disconjugacy have more than one interpretation for higher-order equations and systems, but it is the definitions from the calculus of variations that provide the most fruitful concepts; they also have application to the spectral theory of differential equations. The comparison and separation theorems are given for systems, and it is shown how they apply to scalar equations to give a natural extension of Sturm’s second-order case. Finally we return to the second-order case to show how the indexing of zeros of eigenfunctions changes when there is a parameter in the boundary condition or if the weight function changes sign.

Suggested Citation

  • Don Hinton, 2005. "Sturm’s 1836 Oscillation Results Evolution of the Theory," Springer Books, in: Werner O. Amrein & Andreas M. Hinz & David P. Pearson (ed.), Sturm-Liouville Theory, pages 1-27, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7643-7359-7_1
    DOI: 10.1007/3-7643-7359-8_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7643-7359-7_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.