IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-7091-6045-9_3.html
   My bibliography  Save this book chapter

Commentary on Karl Menger’s Contributions to Analysis

In: Selecta Mathematica

Author

Listed:
  • Ludwig Reich

Abstract

Let $$P(z) = {{w}_{0}} + \sum _{1}^{n}{{a}_{n}}{{(z - {{z}_{0}})}^{n}}$$ be a power series with complex coefficients and with a radius of convergence different from 0. Then K. Weierstrass introduced the notion of “analytisches Gebilde” (complete analytic function) defined by P as the set of all power series $${{w}_{1}} + \sum _{1}^{n}a_{n}^{{(1)}}{{(z - {{z}_{1}})}^{n}}$$ obtained from P by direct and indirect analytic (i.e., holomorphic) continuation. In his article A.7, which is supplemented by his papers A.4, A.5 and A.6, K. Menger emphasizes that for many decades this was the only exact alternative to introducing functions as “laws or rules associating or pairing numbers with numbers” and multifunctions as rules of pairing numbers with sets of numbers. It is well-known today that Weierstrass’ notion of a complete analytic function leads in a natural way to the concept of “analytisches Gebilde” as given by H. Weyl in his famous book [W], §2, §3. This again is, after introducing an appropriate natural topology, a nontrivial example of a Riemann surface, and it includes, in contrast to Weierstrass’ complete analytic functions, also poles and algebraic ramification points (see also C. L. Siegel’s lectures [S], Chapter 1, 3, Chapter 1, 4). It is also well-known to mathematicians today that the definition of Riemann surfaces as a class of two-dimensional manifolds satisfying a certain regularity condition involves the use of a class of changes of the local parameters (coordinates), namely exactly those which are given by locally biholomorphic functions.

Suggested Citation

  • Ludwig Reich, 2003. "Commentary on Karl Menger’s Contributions to Analysis," Springer Books, in: Bert Schweizer & Abe Sklar & Karl Sigmund & Peter Gruber & Edmund Hlawka & Ludwig Reich & Leopold Sc (ed.), Selecta Mathematica, pages 25-34, Springer.
  • Handle: RePEc:spr:sprchp:978-3-7091-6045-9_3
    DOI: 10.1007/978-3-7091-6045-9_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-7091-6045-9_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.