IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-662-68697-3_15.html
   My bibliography  Save this book chapter

Kernmethode

In: Mathematische Einführung in Data Science

Author

Listed:
  • Sven-Ake Wegner

Abstract

Zusammenfassung Als Nächstes betrachten wir Datenmengen, die nicht linear trennbar sind. Um diese dennoch mit den Methoden der letzten zwei Kapitel zu behandeln, bilden wir unsere gegebene, nicht linear trennbare, Datenmenge in einen höherdimensionalen (und manchmal sogar unendlichdimensionalen!) Raum ab. Ist dann die abgebildete Datenmenge linear trennbar, so können wir auf diese den Perzeptronalgorithmus oder die SVM-Methode anwenden und erhalten einen induzierten Klassifizierer für die Originaldaten. Letzteres führt auf den sogenannten Kernel-Trick, bei dem man den höherdimensionalen Raum gar nicht genau zu kennen braucht und trotzdem einen Klassifizierer durch Lösung eines quadratischen Optimierungsproblems bestimmen kann. Die Frage nach der Existenz einer dafür benötigten Kernfunktion behandeln wir in Form der Mercer-Bedingung.

Suggested Citation

  • Sven-Ake Wegner, 2023. "Kernmethode," Springer Books, in: Mathematische Einführung in Data Science, chapter 0, pages 211-227, Springer.
  • Handle: RePEc:spr:sprchp:978-3-662-68697-3_15
    DOI: 10.1007/978-3-662-68697-3_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-662-68697-3_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.