Author
Listed:
- Karol Mikula
(Slovak University of Technology, Department of Mathematics)
- Tobias Preußer
(University of Duisburg, Faculty for Mathematics)
- Martin Rumpf
(University of Duisburg, Faculty for Mathematics)
- Fiorella Sgallari
(University of Bologna, Department of Mathematics and CIRAM)
Abstract
A morphological multiscale method in 3D image and 3D image sequence processing is discussed which identifies edges on level sets and the motion of features in time. Based on these indicator evaluation the image data is processed applying nonlinear diffusion and the theory of geometric evolution problems. The aim is to smooth level sets of a 3D image while preserving geometric features such as edges and corners on the level sets and to simultaneously respect the motion and acceleration of object in time. An anisotropic curvature evolution is considered in space. Whereas, in case of an image sequence a weak coupling of these separate curvature evolutions problems is incorporated in the time direction of the image sequence. The time of the actual evolution problem serves as the multiscale parameter. The spatial diffusion tensor depends on a regularized shape operator of the evolving level sets and the evolution speed is weighted according to an approximation of the apparent acceleration of objects. As one suitable regularization tool local L 2—projection onto polynomials is considered. A spatial finite element discretization on hexahedral meshes, a semi-implicit, regularized backward Euler discretization in time, and an explicit coupling of subsequent images in case of image sequences are the building blocks of the algorithm. Different applications underline the efficiency of the presented image processing tool.
Suggested Citation
Karol Mikula & Tobias Preußer & Martin Rumpf & Fiorella Sgallari, 2003.
"On Anisotropic Geometric Diffusion in 3D Image Processing and Image Sequence Analysis,"
Springer Books, in: Markus Kirkilionis & Susanne Krömker & Rolf Rannacher & Friedrich Tomi (ed.), Trends in Nonlinear Analysis, chapter 8, pages 307-321,
Springer.
Handle:
RePEc:spr:sprchp:978-3-662-05281-5_8
DOI: 10.1007/978-3-662-05281-5_8
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-662-05281-5_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.