Author
Listed:
- Ivan Kolář
(Masaryk University, Department of Algebra and Geometry, Faculty of Science)
- Jan Slovák
(Masaryk University, Department of Algebra and Geometry, Faculty of Science)
- Peter W. Michor
(Universität Wien, Institut für Mathematik)
Abstract
We present certain general procedures useful for finding some equivariant maps and we clarify their application by solving concrete geometric problems. The equivariance with respect to the homotheties in GL(m) gives frequently a homogeneity condition. The homogeneous function theorem reads that under certain assumptions a globally defined smooth homogeneous function must be polynomial. In such a case the use of the invariant tensor theorem and the polarization technique can specify the form of the polynomial equivariant map up to such an extend, that all equivariant maps can then be determined by direct evaluation of the equivariance condition with respect to the kernel of the jet projection G m r → G m 1 . We first deduce in such a way that all natural operators transforming linear connections into linear connections form a simple 3-parameter family. Then we strengthen a classical result by Palais, who deduced that all linear natural operators Λ p T* → Λ p +1 T* are the constant multiples of the exterior derivative. We prove that for p > 0 even linearity follows from naturality. We underline, as a typical feature of our procedures, that in both cases we first have guaranteed by the results from chapter V that the natural operators in question have finite order. Then the homogeneous function theorem implies that the natural operators have zero order in the first case and first order in the second case. In section 26 we develop the smooth version of the tensor evaluation theorem. As the first application we determine all natural transformations TT* → T*T.The result implies that, unlike to the case of cotangent bundle, there is no natural symplectic structure on the tangent bundle.
Suggested Citation
Ivan Kolář & Jan Slovák & Peter W. Michor, 1993.
"Methods for Finding Natural Operators,"
Springer Books, in: Natural Operations in Differential Geometry, chapter 0, pages 212-248,
Springer.
Handle:
RePEc:spr:sprchp:978-3-662-02950-3_6
DOI: 10.1007/978-3-662-02950-3_6
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-662-02950-3_6. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.