IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-662-00547-7_1.html
   My bibliography  Save this book chapter

Topological Degree in Finite Dimensions

In: Nonlinear Functional Analysis

Author

Listed:
  • Klaus Deimling

    (Gesamthochschule Paderborn)

Abstract

In this basic chapter we shall study some basic problems concerning equations of the form f (x) = y, where f is a continuous map from a subset Ω ⊂ ℝ n into ℝ n and y is a given point in ℝ n . First of all we want to know whether such an equation has at least one solution x ∈Ω. If this is the case for some equation, we are then interested in the question of whether this solution is unique or not. We then also want to decide how the solutions are distributed in Ω. Once we have some answers for a particular equation, we need also to study whether these answers remain the same or change drastically if we change f and y in some way. It is most probable that you have already been confronted, more or less explicitly, by all these questions at this stage in your mathematical development.

Suggested Citation

  • Klaus Deimling, 1985. "Topological Degree in Finite Dimensions," Springer Books, in: Nonlinear Functional Analysis, chapter 0, pages 1-34, Springer.
  • Handle: RePEc:spr:sprchp:978-3-662-00547-7_1
    DOI: 10.1007/978-3-662-00547-7_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-662-00547-7_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.