IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-38640-5_7.html
   My bibliography  Save this book chapter

Angular Distance: Spherical and Hyperbolic Geometry

In: Geometry - Intuition and Concepts

Author

Listed:
  • Jost-Hinrich Eschenburg

    (Universität Augsburg, Institut für Mathematik)

Abstract

The geometry of the sphere is familiar to us, from everyday life as well as from geography. It is a part of the metric geometry of space, yet it represents something of its own in it. The distance of two points on the unit sphere is its angle, measured from the center; thus the angle takes on a whole new meaning: spherical distance. There is a second geometry which is similarly defined, but has exactly opposite properties in many respects: Here the surrounding Euclidean space is replaced by ℝ n + 1 $$\mathbb {R}^{n+1}$$ with the Lorentzian scalar product, the spacetime of Special Relativity. Relativity The “unit sphere” in this space is a model of the non-Euclidean geometry of Lobachevski and Bolyai, which had caused a great surprise in the early nineteenth century because it contradicted the common belief that Euclidean geometry Geometry was the only conceivable geometry.

Suggested Citation

  • Jost-Hinrich Eschenburg, 2022. "Angular Distance: Spherical and Hyperbolic Geometry," Springer Books, in: Geometry - Intuition and Concepts, chapter 7, pages 107-114, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-38640-5_7
    DOI: 10.1007/978-3-658-38640-5_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-38640-5_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.