IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-30928-2_1.html
   My bibliography  Save this book chapter

Einführung

In: Dedekinds Theorie der ganzen algebraischen Zahlen

Author

Listed:
  • Katrin Scheel

    (Technische Universität Braunschweig, Institut Computational Mathematics AG PDE)

Abstract

Zusammenfassung Bedenkt man, welche Umgestaltungen andere Theile der Mathematik, z. B. die Theorie der elliptischen Functionen, seit ihren ersten Anfängen im Laufe der Zeit erlitten haben, so wird man es für sehr wahrscheinlich halten, dass auch für die Idealtheorie noch einfachere Grundlagen, als die bisher bekannten, aufgefunden werden. Als eine solche Grundlage kann z. B. der von mir aus der Idealtheorie abgeleitete Satz (S. 465, 541, 577 der zweiten dritten, vierten Auflage dieses Werkes) über den grössten gemeinsamen Theiler von zwei beliebigen ganzen algebraischen Zahlen angesehen werden, und ich habe schon vor vielen Jahren versucht, diesen Weg einzuschlagen; hierbei ist es mir zwar nicht gelungen, eine wesentliche Vereinfachung zu erzielen, weil ich den unmittelbaren Beweis dieses Satzes doch nur mit denselben Hülfsmitteln führen konnte, welche im Wesentlichen auch meiner Theorie der Ideale zu Grunde liegen; [...].

Suggested Citation

  • Katrin Scheel, 2020. "Einführung," Springer Books, in: Dedekinds Theorie der ganzen algebraischen Zahlen, chapter 0, pages 3-17, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-30928-2_1
    DOI: 10.1007/978-3-658-30928-2_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-30928-2_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.