IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-658-17295-4_10.html
   My bibliography  Save this book chapter

Graves: Die Grenze des Zahlenreichs (26.12.1843)

In: Sternstunden der Mathematik

Author

Listed:
  • Jost-Hinrich Eschenburg

    (Unversität Augsburg, Institut für Mathematik)

Abstract

Zusammenfassung Komplexe Zahlen lassen sich als Paare reeller Zahlen und damit als Koordinatenpaare von Punkten der Ebene deuten. Paare reeller Zahlen kann man also multiplizieren und dividieren. Der irische Mathematiker W.R. Hamilton fragte sich, ob Gleiches auch mit Tripeln statt Paaren, also mit den Koordinatentripeln der Punkte des Raumes möglich ist. Schließlich erkannte er, dass man dazu eine weitere Dimension brauchte und fand die Quaternionen (1843). Sein Freund John Graves, dem er davon erzählt hatte, ging noch weiter und konstruierte noch im gleichen Jahr die Oktaven, Oktetts reeller Zahlen, die ebenfalls eine Multiplikation und Division zuließen. Damit ist aber die absolute Grenze erreicht, wie wir sehen werden; das hat Adolf Hurwitz 1898 gezeigt.

Suggested Citation

  • Jost-Hinrich Eschenburg, 2017. "Graves: Die Grenze des Zahlenreichs (26.12.1843)," Springer Books, in: Sternstunden der Mathematik, chapter 10, pages 107-114, Springer.
  • Handle: RePEc:spr:sprchp:978-3-658-17295-4_10
    DOI: 10.1007/978-3-658-17295-4_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-658-17295-4_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.