IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-86745-3_6.html
   My bibliography  Save this book chapter

Measure-Theoretic Uniformity

In: Foundations of Mathematics

Author

Listed:
  • Gerald E. Sacks

Abstract

Here we present the principal ideas and results of [5] with some indications of proof. The general notion of uniformity is difficult to harvest; nonetheless, various offshoots of it have borne fruit in all fields of mathematical logic. In this paper we introduce the notion of measure-theoretic uniformity, and we describe its use in recursion theory, hyperarithmetic analysis, and set theory. In recursion theory we show that the set of all sets T such that the ordinals recursive in T are the recursive ordinals has measure 1. In set theory we obtain all of Cohen’s independence results [1,2]. Solovay [8,9] has extended Cohen’s method by forcing statements with closed, measurable sets of conditions rather than finite sets of conditions; in this manner he exploits the concepts of forcing and genericity to prove: if ZF is consistent, then ZF + “there exists a translation-invariant, countably additive extension of Lebesgue measure defined on all sets of reals” + “the dependent axiom of choice” is consistent. Solovay’s result is also a consequence of the notion of measure-theoretic uniformity.

Suggested Citation

  • Gerald E. Sacks, 1969. "Measure-Theoretic Uniformity," Springer Books, in: Jack J. Bulloff & Thomas C. Holyoke & Samuel W. Hahn (ed.), Foundations of Mathematics, pages 51-57, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-86745-3_6
    DOI: 10.1007/978-3-642-86745-3_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-86745-3_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.