IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-85997-7_18.html
   My bibliography  Save this book chapter

Über die Einbettung der nuklearen Räume in (s) A

In: Contributions to Functional Analysis

Author

Listed:
  • Takako Kōmura
  • Yukio Kōmura

Abstract

Zusammenfassung In dieser Arbeit geben wir eine neue Charakterisierung der nuklearen Räume an: Ein lokal konvexer Raum ist dann und nur dann nuklear, wenn er isomorph zu einem Teilraum des Produkts (s) A des Raumes (s) aller schnell fallenden Folgen ist. (A bezeichnet eine geeignete Indexmenge.) Damit haben wir gleichzeitig bewiesen, daß jeder nukleare (F)-Raum in den Raum E (R 1) aller beliebig oft differenzierbaren Funktionen auf R 1 isomorph eingebettet werden kann. Dieses Problem stammt von Grothendieck [3], und in einigen speziellen Fällen waren positive Antworten bekannt, insbesondere im Fall von nuklearen (F)-Räumen mit Basis, d. h. im Fall von nuklearen, vollkommenen (F)-Räumen (vgl. [1], [3]).

Suggested Citation

  • Takako Kōmura & Yukio Kōmura, 1966. "Über die Einbettung der nuklearen Räume in (s) A," Springer Books, in: Contributions to Functional Analysis, pages 284-288, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-85997-7_18
    DOI: 10.1007/978-3-642-85997-7_18
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-85997-7_18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.