IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-77303-7_42.html
   My bibliography  Save this book chapter

Three Exactly Soluble Quantum Field Theory Models in 2-,3- and 4-Dimensional Space Time and Some General Questions They Suggest

In: Mathematical Physics X

Author

Listed:
  • Arthur S. Wightman

    (Princeton University, Department of Physics)

Abstract

As a result of three decades of hard work on the local algebra formalism, we now have a general theory of quantized fields that provides a satisfactory framework for field theory. On the other hand, constructive quantum field theory has made rather limited progress toward the objective of characterizing and constructing all field theories that satisfy the axioms of the general theory. We do have the nontrivial examples P(ϕ)2,Y 2,ϕ 3 4 ,Y 3,Higgs2,Higgs3 and fragments of Y M 3 and Y M 4. However, these examples do not provide enough information to suggest reasonable guesses for the answers to general questions. For example, how do the perturbatively non-renormalizable theories fit into the general picture? The recent results of da Veiga and coworkers establishing the existence of tempered solutions of the Gross-Neveu model in three dimensional Euclidean space-time, show that a non-perturbative treatment of a perturbatively non-renormalizable theory is possible using rigorous renormalization group methods. What distinguishes such theories? Is the applicability of renormalization group methods to be regarded as always a reliable guide to the existence of non-trivial solutions of theories?

Suggested Citation

  • Arthur S. Wightman, 1992. "Three Exactly Soluble Quantum Field Theory Models in 2-,3- and 4-Dimensional Space Time and Some General Questions They Suggest," Springer Books, in: Konrad Schmüdgen (ed.), Mathematical Physics X, pages 393-398, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-77303-7_42
    DOI: 10.1007/978-3-642-77303-7_42
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-77303-7_42. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.