IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-69828-6_17.html
   My bibliography  Save this book chapter

On the Structure of Complete Manifolds with Positive Scalar Curvature

In: Differential Geometry and Complex Analysis

Author

Listed:
  • Shing Tung Yau

Abstract

One of the greatest contributions of Rauch in differential geometry is his famous work on manifolds with positive curvature. His comparison theorems, which are needed for his proof of the pinching theorem, are fundamental for later developments in Riemannian geometry. His work initiated a systematic research developed by Klingenberg, Berger, Gromoll, Meyer, Cheeger, Gromov, Ruh, Shio-hama, Karcher, etc. This work depends heavily on how a length-minimizing geodesic behaves under the influence of the curvature. Since geodesic is one-dimensional, the information we need from the curvature tensor is the curvature of the two planes which are tangential to the geodesic. This means that we need to know the behavior of the sectional curvature or the Ricci curvature of the manifold. Therefore, it seems very unlikely that arguments based only on length-minimizing geodesics can be used to deal with problems related to scalar curvature. The problem of scalar curvature, however, has drawn a lot of attention of the differential geometers in the late sixties and the seventies, partly because of its interest in general relativity.

Suggested Citation

  • Shing Tung Yau, 1985. "On the Structure of Complete Manifolds with Positive Scalar Curvature," Springer Books, in: Isaac Chavel & Hershel M. Farkas (ed.), Differential Geometry and Complex Analysis, pages 219-222, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-69828-6_17
    DOI: 10.1007/978-3-642-69828-6_17
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-69828-6_17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.