IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-60218-4_29.html
   My bibliography  Save this book chapter

Geometric Interpretation of Strong Inconsistency in Knowledge Based Systems

In: Computer Algebra in Scientific Computing CASC’99

Author

Listed:
  • E. Roanes-Lozano

    (Universidad Complutense de Madrid, Dept. Algebra, Edificio “Almudena”)

  • E. Roanes-Macías

    (Universidad Complutense de Madrid, Dept. Algebra, Edificio “Almudena”)

  • L. M. Laita

    (Universidad Politécnica de Madrid, Dept. Artificial Intelligence, Campus de Montegancedo)

Abstract

This paper distinguishes between two different kinds of inconsistency of rule-based Knowledge Based Systems (KBSs) constructed on multi-valued logics, which we have denoted “weak inconsistency” and “strong inconsistency”, respectively. While “weak inconsistency” is the inconsistency studied in the verification related references listed at the end of the article, “strong inconsistency” is introduced in this paper. “Strong inconsistency” is a particular case of “weak inconsistency”. An interesting interpretation in terms of polynomial ideals and (discrete) algebraic varieties is provided. Finally, an implementation in the Computer Algebra System (CAS) Maple is included. This implementation provides both a visualization of “strong inconsistency” and symbolic results (directly handling truth tables).

Suggested Citation

  • E. Roanes-Lozano & E. Roanes-Macías & L. M. Laita, 1999. "Geometric Interpretation of Strong Inconsistency in Knowledge Based Systems," Springer Books, in: Victor G. Ganzha & Ernst W. Mayr & Evgenii V. Vorozhtsov (ed.), Computer Algebra in Scientific Computing CASC’99, pages 349-363, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-60218-4_29
    DOI: 10.1007/978-3-642-60218-4_29
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-60218-4_29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.