Author
Listed:
- W. Govaerts
(Fund for Scientific Research F.W.O.
University of Gent, Department of Applied Mathematics and Computer Science)
- Yu A. Kuznetsov
(Universiteit Utrecht, Mathematisch Instituut
Russian Academy of Sciences, Institute of Mathematical Problems of Biology)
- B. Sijnave
(University of Gent, Department of Applied Mathematics and Computer Science)
Abstract
The qualitative behaviour of iterates of a map can be very complicated. One approach to these phenomena starts with the simplest situation, the case where the map has a fixed point. Under parameter variations, the fixed point typically moves until a bifurcation value is reached and one of three possible more complex phenomena is encountered. These are fold, flip and Neimark - Sacker bifurcations; they are called codimension one phenomena because they generically appear in problems with one free parameter. The software package CONTENT (continuation environment) combines numerical methods (integration, numerical continuation etcetera) with symbolic methods (e.g. symbolic derivatives) and allows (among other things) to numerically continue fixed points and to detect, compute and continue fold points, flip points and Neimark - Sacker points. To the best of our knowledge content is the only softwaxe that allows to detect and compute all codimension two points on such curves, including strong resonances and degenerate Neimark - Sacker bifurcations. The paper provides details on defining systems and test functions implemented in content for these purposes. We show the power of the software by studying the behaviour of an electromechanical device that exhibits a complicated bifurcation behaviour, the so - called Sommerfeld’s efFect. In this example the map is defined by the time integration of a three - dimensional dynamical system over a fixed time interval.
Suggested Citation
W. Govaerts & Yu A. Kuznetsov & B. Sijnave, 1999.
"Bifurcations of Maps in the Software Package CONTENT,"
Springer Books, in: Victor G. Ganzha & Ernst W. Mayr & Evgenii V. Vorozhtsov (ed.), Computer Algebra in Scientific Computing CASC’99, pages 191-206,
Springer.
Handle:
RePEc:spr:sprchp:978-3-642-60218-4_14
DOI: 10.1007/978-3-642-60218-4_14
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-60218-4_14. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.