IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-60218-4_12.html
   My bibliography  Save this book chapter

Partial Inverse Heuristic for the Approximate Solution of Non-linear Equations

In: Computer Algebra in Scientific Computing CASC’99

Author

Listed:
  • Gaston H. Gonnet

    (Informatik E.T.H.)

  • Allan Bonadio

    (Waterloo Maple)

Abstract

We show how to generate many fix-point iterators of the form x i +1= F(x i ) which could solve a given non-linear equation. In particular, these iterators tend to have good global convergence, and we show examples whereby obscure solutions can be discovered. This methods are only suitable for computer algebra systems, where the equations to be solved can be manipulated in symbolic form. Also, a systematic method for finding most or all solutions to nonlinear equations that have multiple solutions is described. The most successful iterators are constructed to have a small number of occurrences of x i in F. We use grouping of polynomial terms and expressions in x, e x and In x using known inverse relations to obtain better iterators. Each iterator is tried in a limited way, in the expectation that at least one of them will succeed. This heuristic shows a very good behaviour in most cases, in particular when the answer involves extreme ranges.

Suggested Citation

  • Gaston H. Gonnet & Allan Bonadio, 1999. "Partial Inverse Heuristic for the Approximate Solution of Non-linear Equations," Springer Books, in: Victor G. Ganzha & Ernst W. Mayr & Evgenii V. Vorozhtsov (ed.), Computer Algebra in Scientific Computing CASC’99, pages 159-176, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-60218-4_12
    DOI: 10.1007/978-3-642-60218-4_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-60218-4_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.