IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-3-642-59195-2_11.html
   My bibliography  Save this book chapter

Efficient Calculation of Subdivision Surfaces for Visualization

In: Visualization and Mathematics

Author

Listed:
  • Markus Kohler

    (University of Dortmund, Department for Graphical Systems)

  • Heinrich Müller

    (University of Dortmund, Department for Graphical Systems)

Abstract

Summary A subdivision surface is defined by a polygonal mesh which is iteratively refined into an infinite sequence of meshes converging to the desired smooth surface. Classical subdivision schemes are those described and analysed by Catmull—Clark and Doo—Sabin. A graphical representation can be obtained by stopping the iteration on a level of refinement sufficient to yield a smooth representation when drawing the mesh on that level. However, the storage requirements of the finest mesh and those on the previous levels can be considerable, that is exponential in the number of iterations, since the number of mesh elements grows by a constant factor from level to level. We overcome this problem by deviating from level-wise breadth-first subdivision by subdividing the mesh locally in a depth-first manner over all levels of iteration. This results in a front of subdivision which moves over the surface and successively reports the elements of the finest mesh. Only the front of subdivision must be held in main memory, and it needs only about square-root of the space required by the standard method, at about the same time of computation.

Suggested Citation

  • Markus Kohler & Heinrich Müller, 1997. "Efficient Calculation of Subdivision Surfaces for Visualization," Springer Books, in: Hans-Christian Hege & Konrad Polthier (ed.), Visualization and Mathematics, pages 165-179, Springer.
  • Handle: RePEc:spr:sprchp:978-3-642-59195-2_11
    DOI: 10.1007/978-3-642-59195-2_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-3-642-59195-2_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.